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ABSTRACT

This tech-note will demonstrate how the detector setup of the Short Baseline Program will
expand the current limits in νµ disappearance studies. The signal injection plots will both
illustrate and heighten our understandings of the sensitivity plots shown in earlier studies.
While the signal injection plots signify a great improvement, they also present the limitations
in our approach to confidence level cuts, requiring a more statistical approach to account for
the fluctuation of the best-fit point for signals in low-sensitivity regions of the ∆m2

41–sin2(2θµµ)

parameter space.
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FIG. 1: MiniBooNE νe findings, illustrating detection of an excess of both electron neutrinos and

anti-neutrinos in the Fermilab Booster Beam [1].

I. EXPERIMENTAL ANOMALIES: MINIBOONE + LSND

The original impetus for these studies, as well as the Booster neutrino program, stemmed
from an electron neutrino excess detected by LSND [2] and further by MiniBooNE [1].

One proposed solution is that there exist more than the three flavors of neutrinos described
in the standard model. These new hypothetical neutrinos have been labeled sterile neutrinos
for their inability to interact even via the weak interaction, making them very difficult to
detect. With this solution in consideration, the observation in LSND and MiniBooNE could
be explained by muon neutrinos mixing through an additional sterile neutrino state resulting
in more electron neutrinos than a three-neutrino oscillation model would have allowed. As it
stands, the three-neutrino model of oscillation contains an L

E
component which should suppress

νe appearance almost entirely at short baselines and accelerator energies.
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FIG. 2: Uncertainty due to the neutrino flux found in MiniBooNE [3].

II. νµ DISAPPEARANCE

Approximately 99% [4] of the beam is comprised of muon neutrinos with electron neutrinos
making up the rest. This makes νe appearance far more noticeable, particularly in detectors
with less resolution. Difficulty also arises when one considers uncertainties in the booster beam
flux. From Fig. 2 we see that even at its lowest, there is a beam uncertainty of close to
9% in a single detector. This uncertainty is relatively insignificant with the low presence of
electron neutrinos, but it makes muon neutrino disappearance much harder to observe down
with confidence.

The main analysis of the Short Baseline Neutrino program is of νe appearance, but in order
to interpret it as an oscillation with sterile neutrinos, one needs to observe the disappearance of
muon neutrinos with equal or greater probability. A νe appearance study observes particles that
begin as νµ, oscillate to some other particle and then end as a νe. The difficulty comes from that
middle step, which could have any number of potential oscillations. Different numbers of sterile
neutrinos would all provide different results in the study. A disappearance study, however,
simply observes particles that begin as νµ and oscillate into anything else. This makes fewer
initial assumptions, but when paired with a νe appearance analysis gains the most strength.
If more muon neutrinos disappear than electron neutrinos appear, it raises more interesting
questions and lends further evidence towards a non-standard model solution.

The νµ disappearance formula is given by [5]:

P (νµ → νx) = 1− sin2(2θµµ) sin2(1.27∆m2
41

Lν
Eν

). (1)
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To constrain flux uncertainties, the short baseline program plans to install a near detector,
LAr1–ND to be placed directly in front of the beam at 100m from the neutrino target. This
detector’s findings will allow us to constrain the beam and effectively lower this flux uncertainty.
Pairing this with MicroBooNE and the upcoming T–600 detector allows us to use these statistics
to constrain data in order to potentially observe νµ disappearance with greater confidence.

III. SENSITIVITY CURVES

We want to know how well we can constrain the parameters of sterile neutrino oscillation
through observation of νµ disappearance with our detector setup of LAr1–ND (100m), Micro-
BooNE (470m), and T–600 (600m).

The current state of the art are sensitivity studies which compare a predicted sterile neutrino
oscillations over a phase space of ∆m2

41 and sin2(2θµµ) with a null hypothesis and record our
ability to resolve each signal. In order to do these studies, we store the energy distributions
for the null hypothesis and predicted oscillations into vector, calculate the χ2 value for each
prediction, using a covariance matrix to determine uncertainties and we draw contours on the
phase space to correspond to cuts. The process results in a χ2 value for each point in the phase
space. Sensitivity curves are simply cross sectional cuts of this χ2 surface at different confidence
levels.

The χ2 value for each point is given by:

χ2 = (Enull − Epred)iCov−1
ij (Enull − Epred)j (2)

where Enull is the null hypothesis vector, Epred is the prediction vector and Cov is the covariance
matrix. With an array of χ2 values for each point in the ∆m2

41–sin2(2θµµ) phase space, we run
a one-directional Raster scan to draw curves for each confidence level. Since we scan only from
one side, we only see variation in the ∆m2

41 parameter, so we use a one-sided χ2 distribution
with one degree of freedom. The code goes through the χ2 of each ∆m2

41 point and finds the
cut-offs for 5σ (χ2 = 23.40), 3σ (χ2 = 7.74), and 90% Confidence (χ2 = 1.64) [6].

The null hypothesis is an energy spectrum of νµ under the assumption that there is no
oscillation to sterile neutrinos. It is constructed by Monte Carlo for each of the three detectors
in the setup.

Each prediction vector is built from this null hypothesis before subtracting the proportion
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of muon neutrinos that will have oscillated to sterile neutrinos with oscillation parameters given
by each point in the phase space, using Eq. 1.

With a full nominal uncertainty matrix, we wish to incorporate uncertainty in the beam
flux. Similar uncertainty matrices are built for different systematic fluctuations in the beam
makeup [8]. To get the components of the final covariance matrix, we use Eq. 3 for each n and
average over N = 1000 systematic fluctuations.

Eij = (Nom− Sys)i(Nom− Sys)j. (3)

As part of the shape-only analysis, all components are factorized and scaled to the null hypoth-
esis in the near detector to remove normalization information. The statistical uncertainty is
then added along the diagonal.

Limitations in our knowledge of the normalization uncertainties, particularly with regards
to cross-section normalizations, have prevented us from having implemented any into our code.
We instead opt to disregard normalization information altogether and run a purely shape-only
analysis. Without proper knowledge about these cross sections, our results would be overly
optimistic. By cutting them out and limiting ourselves to only the shape information of these
energy spectra, we get more realistic sensitivity. An important step in a shape-only analysis is
to subtract the normalization component from the nominal matrix component.

The covariance matrix allows us to account for systematic differences and their correlations
in the three detectors and the difference in flux at their locations. This matrix boils down to
three main components: uncertainties in the shape of the distribution, those in the normal-
ization, and those in the bin-to-bin normalization (“mixed component”). Components of our
nominal uncertainty matrix can be factorized into the following equations [7]:

Eshape
ij = Eij −

Nj

NT

n∑
k=1

Ei,k −
Ni

NT

n∑
k=1

Ek,j +
NiNj

N2
T

n∑
kl

Ek,l, (4)

Emixed
ij =

Nj

NT

n∑
k=1

Ei,k +
Ni

NT

n∑
k=1

Ek,j − 2
NiNj

N2
T

n∑
kl

Ek,l, and (5)

Enorm
ij =

NiNj

N2
T

n∑
kl

Ek,l. (6)

The final result can be seen in Fig. 3.



SBN–DocDB 148, MicroBooNE–DocDB 3826 (v0) 5

µµθ22sin

-310 -210 -110 1

]2
 [

eV
2 41

m∆

-110

1

10

210

MicroBooNE (470m) and T600 (600m, on axis)

PRELIMINARY

 mode, CC Eventsν
Statistical and Flux Uncertainty
Reconstructed Energy

 Efficiencyµν80% 

90% CL
 CLσ3
 CLσ5

µµθ22sin

-310 -210 -110 1
]2

 [
eV

2 41
m∆

-110

1

10

210

MicroBooNE (470m) and T600 (600m, on axis)
LAr1-ND (100m)

PRELIMINARY

 mode, CC Eventsν
Statistical and Flux Uncertainty
Reconstructed Energy

 Efficiencyµν80% 

90% CL
 CLσ3
 CLσ5

FIG. 3: Sensitivity curves for different detector setups, including LAr1–ND with an exposure of

6.6 × 1020 POT, MicroBooNE, with 6.6 × 1020 POT, and T–600, with 6.6 × 1020 POT. Contours

are drawn around regions of sensitivities greater than 5σ, 3σ, and 90% confidence levels.

IV. SIGNAL INJECTION

These sensitivity curves illustrate how well signals can be resolved across the phase space.
This is useful in demonstrating the power of a detector setup. We want to go a step further
and study how well we can constrain the parameters of a single, specific signal.

To do this, we feed an input in the form of a coordinate on the ∆m2
41–sin2(2θµµ) plane and a

signal vector is created by subtracting the νµ spectrum that transitioned to sterile neutrinos of
the given parameters from the null hypothesis. Before the χ2 values are calculated, the predic-
tion vectors are all scaled to match the “real” signal in the near detector. This scaling is done
on a bin-by-by basis for each energy spectrum in each detector and it is another consequence
of the shape-only analysis, removing all normalization from the comparison. In Fig. 4, we see
an example of a signal vector and a prediction vector for another point in the phase space. In
the near detector, the contribution to the χ2 value is zero, so all χ2 information comes from
MicroBooNE and T–600.

The χ2 values are then calculated using:
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FIG. 4: Scaling of the muon neutrino disappearance energy distribution in a shape-only signal injec-

tion analysis in the near and far detector. The injected signal in each plot has oscillation parameters

sin2(2θµµ) = 0.1, ∆m2
41 = 10 eV 2.

χ2 = (Esig − Epred)iCov−1
ij (Esig − Epred)j (7)

where Esig represents the energy bins for the signal matrix.

With this array of χ2 values, we must determine the best-fit point. The best-fit is the set of
oscillation parameters corresponding to the closest match of prediction to signal. It is where the
code believes this injected signal lies in the phase space. The best-fit is found by determining
the point on the ∆m2

41–sin2(2θµµ) with the lowest χ2 value. Fig. 5 shows a plot of each χ2

value over the phase space.

We again run a one-directional Raster scan through the χ2 values to place our confidence
level cuts, but with an altered selection mode. For each point on the ∆m2

41–sin2(2θµµ) plane,
we decide to mark it for a given confidence level if it satisfies the following inequ ality:

χ2 ≤ χ2
C.L. + χ2

low. (8)

Where χ2
low is the lowest χ2 value, or the value corresponding to the best-fit point. While the

scan is still one-directional, the contours will be cut at both sides. This way of cutting off the
confidence levels also means that we are taking into account both the sin2(2θµµ) and ∆m2

41

parameters, so we must use a two-sided χ2 distribution with two degrees of freedom [6]. The
software looks for points in the 90% confidence level (χ2

C.L. ≤ 4.61), 3σ (χ2
C.L. ≤ 11.83) and 5σ
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FIG. 5: χ2 surface for injected signal of oscillation parameters sin2(2θµµ) = 0.038 and ∆m2
41 =

0.25. The confidence level, given by the square root of the χ2 value, is shown for each point on

the phase space. For display purposes, the confidence level is cut off at 10σ (χ2 = 100).

(χ2
C.L. ≤ 28.23).

The confidence levels in this plot signify how well we may determine the oscillation pa-
rameters of the signal. We see in Fig. 7a that the parameters may be constrained fairly close
to the actual signal. In Figs. 7b-7d, we see that as we walk the signal further into the low
sin2(2θµµ) and therefore out of the high sensitivity area signified in Fig. 3, we see the allowed
regions on the plot grow, making the parameters of oscillation harder to constrain. In the last
figure, showing a signal far outside the 5σ region on the signal injection plot, we see that there
is no closed contour able to fit on the plane, representing limitations in our ability to constrain
parameters in that sector to any high degree of confidence.

At this point, these signal injection plots are incredibly optimistic. Since both the signal and
prediction vectors are produced by the same means, the construction of this code dictates that
this lowest χ2 will always be equal to zero and will always line up perfectly with the injected
signal.

The solution to this is to introduce random fluctuation based on the statistical uncertainty
in the signal to simulate results that might be seen after a limited run by the detectors. The
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FIG. 6: Plot of allowed region for injected signal. The yellow region represents constraint of the

signal oscillation parameters to a 90% confidence level, the green represents constraint to a 3σ confi-

dence level and the blue to a 5σ confidence level. The best-fit point is marked with a small star.

signal vector is created exactly as before and then a Poisson distribution is implemented to
fluctuate each individual bin. This correspond to a sample of “fake data”. Prediction vectors
are then scaled to this fluctuated signal and the rest of the calculations proceed as before.

Now that the signal has been given random fluctuations, it no longer represents a perfect
match with some corresponding prediction vector. The lowest χ2 will no longer always be zero,
as we see in Fig. 9 which represents the same exact data as in Fig. 5, but with added fluctuation.

Since there is no longer a perfect match for the two vectors, the best-fit point will not
necessarily agree with the signal. We need to add one more step to the process. The covariance
matrix is originally built without any assumptions about a signal, which is much like a real-life
case. The matrix is fractionalized and scaled to a null hypothesis. After a signal is detected,
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(a) (b)

(c) (d)

FIG. 7: Plots of allowed regions for signals at ∆m2
41 = 2.5eV 2, and a) sin2(2θµµ) = 0.1, correspond-

ing to a signal well within the 5σ region of the sensitivity plots (see Fig. 3), b) sin2(2θµµ) = 0.038,

corresponding to a signal within the 3σ region of the sensitivity plots, c) sin2(2θµµ) = 0.015,

corresponding to a signal within the 90% confidence level region of the sensitivity plots, and d)

sin2(2θµµ) = 0.002, corresponding to a signal lying well outside of the 90% confidence level region

of the sensitivity plots.
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FIG. 8: Plot of the bin-by-bin Poisson fluctuation of the νµ energy spectrum for a signal vector in

the far detector.
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FIG. 9: χ2 surface for a fluctuated injected signal.

however, and a best-fit point is found, this matrix must be updated. The covariance matrix is
rebuilt as before, but instead scaled to the best-fit signal.

With the new covariance matrix, the χ2 values are calculated again and a new best-fit point
is found. The code then checks whether or not the χ2

min has changed by more than 0.002 after
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FIG. 10: The best fit point is plotted after the initial χ2 calculation and then once more for each of

four more iterations. The markers get darker and smaller for each following iteration, but note that

we only see significant movement between the markers for the first and second best fits. After the first

covariance matrix update, the best fit does not display any movement.

the matrix rebuild and if it has, then it rebuilds the covariance matrix again, feeding the new
best-fit into it. The process repeats until the χ2 moves by less than 0.002 or ten iterations
occur, implying a failure to converge.

In Fig 10, we see a plot of the best fit point after each iteration. We can see that after one
iteration, there is a movement of the best fit point, but beyond that, it remains relatively still.
The most significant change comes from the first update of the covariance matrix, where the
null hypothesis is replaced with some signal.

But there are still problems! The best fit point is inconsistent from one run to another,
rarely landing on the actual injected signal despite these iterations. Each time the code is run,
it represents a pseudo-experiment and the signal is re-fluctuated. In the high sin2(2θµµ) region
where allowed regions are universally very tight this issue is virtually non-existent, but as we
move further towards the left of the plot, we see increased instability.
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FIG. 11: Plots of the best fit points after simulating 500 pseudo-experiments for two different in-

jected signals. The red point marks the injected signal and each gray point marks the best-fit point

from one pseudo-experiment.

This calls into question to the manner by which we cut confidence levels. The shortcut
approach that we employ using a two-sided χ2 distribution is effective to first order. Once
statistical fluctuations are introduced to the signal, it simulates “fake data” which presents us
with our limitations. Each individual run of the code represents an experiment, so confidence
levels can no longer be given by their χ2 value. A confidence level is defined as a region
containing a specific portion of best-fit points after several pseudo-experiments. In order to
account for this and draw proper confidence levels, the code would need to be run thousands
of times for each injected signal to map regions to the discovered best-fits. As an example of
this, Fig. 11 shows the positions of best fit points after 500 pseudo-experiments each.

These plots demonstrate the limitations of the software as the signal is pushed further
towards the edges of sensitivity. When the signal is firmly within the 90% confidence contour
of the sensitivity plots, all of the best fit points are clustered very close. Once this signal moves
out, however, the best-fit may vary wildly with each experiment. Some notable points are
those at very high ∆m2

41, incredibly far away from the injected signal. If the signal moved to
an even lower sin2(2θµµ), we see the plots in Fig.12. The best fit points appear to outline the
sensitivity contours and few if any exist very close to the injected signal. Interestingly, there
is a distinct imbalance of best-fit plottings, with the points favoring higher values of ∆m2

41.
This is further illustrated in the shape and rate analysis plot of Fig.12. This weighting towards
high ∆m2

41 comes as a consequence of the nature of the analysis. The ∆m2
41 component in the
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FIG. 12: Plots of the best fit points after simulating 500 pseudo-experiments for the same signal.

The red point marks the injected signal and each gray point marks the best-fit point from one pseudo-

experiment. One is a shape-only analysis, and the other contains normalizations information, making

it a shape and rate analysis.

neutrino oscillation probability formula corresponds to oscillation frequency. All sufficiently
high frequencies will be indiscernible from each other, since the oscillation will approximate to
half of the amplitude. For lower ∆m2

41, we will see lower, more distinct frequencies, which will
present higher χ2 values when compared to other signals.

V. CONCLUSIONS

These studies show that the detector setup of the Short Baseline Program greatly expands
the current limits in νµ disappearance studies. The signal injection plots further demonstrate the
sensitivities shown in earlier studies while simultaneously presenting the reasoning why these
studies are being performed. Further efforts in these studies will need to apply a statistical
approach to assigning the confidence level cuts in order to account for the fluctuation of the
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best-fit point for signals in low-sensitivity regions of the phase space.
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